
EDIABAS - TRANSPARENT MODE

EDIABAS
Electronic Diagnostic Basic System

TRANSPARENT MODE
INTERFACE DESCRIPTION

VERSION 6a

Copyright BMW AG, created by Softing AG

TMODE.DOC

EDIABAS - TRANSPARENT MODE

CONTENTS

CONTENTS 2

1. UPDATE HISTORY 5

2. INTRODUCTION 6

2.1. About this Manual 6

2.2. Conventions 7

2.3. Special features, definitions, acronyms 7

3. GENERAL 8

4. THE PROGRAMMING INTERFACE 9

4.1. The API functions apiJobData/apiJobExt 9

4.2. The API function apiResultBinary 12

4.3. Application example 12

5. THE TMODE FUNCTIONS 15

5.1. Overview of all TMODE functions 16

5.2. INITIALISIERUNG 16

2

EDIABAS - TRANSPARENT MODE

5.3. SETZE_INTERFACE_ZURUECK 17

5.4. SETZE_SG_PARAM_ZURUECK 17

5.5. SETZE_SG_PARAMETER_ALLG 17

5.6. SETZE_SG_PARAMETER_EIDBSS 18

5.7. SETZE_ANTWORTLAENGE 18

5.8. HOLE_KEYBYTES 20

5.9. SENDE_TELEGRAMM 20

5.10. SENDE_TELEGR_WIEDERHOLT 21

5.11. HOLE_ANTWORT_TELEGR 21

5.12. STOPPE_WIEDERH_ANFORDERUNG 21

5.13. LESE_INTERFACE_TYP 22

5.14. LESE_INTERFACE_VERSION 22

5.15. LESE_SPANNUNG_KL30 22

5.16. LESE_SPANNUNG_KL15 23

5.17. LESE_PORT 23

5.18. SETZE_PORT 23

3

EDIABAS - TRANSPARENT MODE

5.19. SETZE_PROGRAMMIERSPANNUNG 24

5.20. SETZE_SIA_RELAIS 24

5.21. TESTE_DIAGNOSELEITUNG 25

5.22. HOLE_INTERFACE_STATUS 25

5.23. REICHE_AN_INTERFACE_DURCH 25

5.24. SETZE_TRAP_MASK_REGISTER 26

5.25. LIES_TRAP_MASK_REGISTER 26

A. LIST OF REFERENCES 27

4

EDIABAS - TRANSPARENT MODE

1. Update History

Version 3.0 First version

Version 3.0A

 New: SETZE_TRAP_MASK_REGISTER
 New: LIES_TRAP_MASK_REGISTER

Version 3.0B

 Correction: SETZE_SG_PARAM_ZURUECK instead of
SETZE_SG_PARAMETER_ZURUECK

Version 4.1 revised for V4.1.0

Version 5 revised for EDIABAS V5.1.0

Version 6 revised for EDIABAS V6.0.0

Version 6a revised for EDIABAS V6.4.4

5

EDIABAS - TRANSPARENT MODE

2. Introduction

2.1. About this Manual

This manual describes the interface of the EDIABAS transparent mode. It has been
written for use by developers of diagnostic software who work with the API interface,
and is based on the API Interface Description [1] and the EIDBSS documentation [2].
API functions and interface functions are only detailed so far as is necessary for an
understanding of the transparent mode. The emphasis is on descriptions of the
individual TMODE functions. These functions are the jobs provided by the special
description file for the transparent mode with the name "TMODE". You will find
general information about EDIABAS and control unit description files in Reference
[4].

6

EDIABAS - TRANSPARENT MODE

2.2. Conventions

The following typographical conventions are used in this manual:

Example Description
SAMPLE.C Upper case characters are used for

filenames, registers and operating system
commands.

job, string, while Bold type is used for key words and
operators of the BEST/2 and BEST/1
languages and for API functions. In syntax
descriptions these words must be written as
shown.

expression Italics designate placeholders for values to
be entered by the programmer; e.g., file
names.

[option] Words enclosed in square brackets may be
optionally specified.

{ result |
argument }

Curvy braces and vertical strokes
characterize entries from which only one
must be selected, except when in square
brackets.

[constant...] job... An ellipsis (three dots) which directly follows
an expression indicates that several
expressions of the same type can follow.

hallo="Test"; This syntax designates examples, user
entries, program outputs and error
messages.

while() {
.
.}

A column or a row comprising three dots
indicates that a section of an example was
intentionally omitted.

[1] Reference to a document in References.

2.3. Special features, definitions, acronyms

The abbreviations used in this and all other EDIABAS documents are explained in the
"GLOSSARY" section of the "EDIABAS User Manual".

7

EDIABAS - TRANSPARENT MODE

3. General

The transparent mode of EDIABAS enables the developer of diagnostic/coding
software to directly access the interface and control units with the help of a special
description file. With the transparent mode, the data that are interchanged between the
interface and the application programme or between the control unit and the application
programme are not processed in a control unit-specific description file but in the
application programme itself.

This means that the diagnostic data are accessed at message level and not at
symbolic level. EDIABAS still performs error handling however (e.g. communication
errors). With the aid of the transparent mode it is therefore possible to export existing
diagnostic software to EDIABAS without having to make structural changes to the
existing application programme.

The description file known as "TMODE" provides basic utilities for the transparent
mode. These utilities are referred to in the sections that follow as TMODE functions.

TMODE functions for accessing control units:

� Reset control unit parameters in the interface
� Set control unit parameters in the interface
� Set message answer length
� Get keybytes from control unit
� Send and receive a message
� Start repeated send and receive a message
� Get the current answer message after starting the repeated send of a message
� Stop repeated send and receive a message

TMODE functions for accessing the diagnostic bus interface:

� Reset interface
� Read out the interface type
� Read the interface version number
� Read out the voltage at terminal 30
� Read out the voltage at terminal 15
� Read in analog and digital values
� Set digital outputs
� Set the programming voltage
� Trigger the SI relay
� Test the diagnostic lead
� Read out the interface status
� Send a random byte string to the interface

8

EDIABAS - TRANSPARENT MODE

4. The Programming Interface

The programming interface used for accessing TMODE functions consists of following
API functions:

� ApiJobData/apiJobExt
� apiResultBinary

4.1. The API functions apiJobData/apiJobExt

Access to the interface and beyond it to a control unit is possible by sending an API job
to EDIABAS. In the transparent mode this job always has the following structure:

apiJobData(description file, job, data buffer, data length, result)

or

apiJobExt(description file, job, standard data buffer, standard data length,

data buffer, data length, result, reserved)

The description file of the transparent mode is called "TMODE", and makes the link to
the TMODE functions. Each TMODE function is implemented in the description file as a
separate job.

The name of the TMODE function (e.g. "SENDE_TELEGRAMM") is entered as the job
(see the section on "TMODE Functions").

Data required by the TMODE function are entered in a data buffer (e.g. message data
35,00,05,00 for reading the identification data from the LSM control unit). Data length
gives the number of data bytes (e.g. number of data is 4 for reading the identification
data from the LSM control unit).

In the transparent mode "" is always entered as the parameter result because this
parameter is not evaluated in the TMODE description file.

Using the API function apiJobExt standard data buffer must be set on “”, standard
data length must be set on 0 and reserved must be set on 0.

In transparent mode the same description file ("TMODE") is used for all control units.

9

EDIABAS - TRANSPARENT MODE

Syntax:

 void apiJobData (char *ecu, char*job,
unsigned char*parabuf,

 int*paralen,
char*result)

Parameters:

 ecu Name of transparent mode description file: "TMODE"
 job Name of the TMODE function
 parabuf Data bytes. The data bytes depend on the TMODE function.
 paralen Number of data bytes (maximum number: APIMAXPARA)
 result Results to be identified (max. length of result string:

APIMAXRESULT). Several results must be separated by a semi-
colon.

 A blank string ("") must be defined to process all results.
 The results depend on the TMODE function.

Return: -

Example:

 unsigned char message[APIMAXPARA]={0x35,0x00,0x05,0x00};
 int messagelength=4;

 apiJobData("TMODE","SENDE_TELEGRAMM",
 message,message length,"");

10

EDIABAS - TRANSPARENT MODE

Syntax:

void apiJobExt(char *ecu,char *job,
 unsigned char *stdparabuf, int stdparalen,
 unsigned char *parabuf, int paralen,
 char *result, long reserved)

Parameters:

 ecu Name of transparent mode description file: "TMODE"
 job Name of the TMODE function
 stdparabuf Data bytes for standard jobs. This parameter is not supported by

TMODE: ""
 stdparalen Number of data bytes for standard jobs. This parameter is not

supported by TMODE: 0
 parabuf Data bytes. The data bytes depend on the TMODE function.
 paralen Number of data bytes (maximum number: APIMAXPARA)
 result Results to be identified (max. length of result string:

APIMAXRESULT). Several results must be separated by a semi-
colon.

 A blank string ("") must be defined to process all results.
 The results depend on the TMODE function.

 reserved reserved: always 0

Return: -

Example:

unsigned char telegram[APIMAXPARA]={0x35,0x00,0x05,0x00};
int telegramLength=4;

apiJobExt("TMODE","SENDE_TELEGRAMM","",0,
 telegram,telegramLenght,"",0L);

11

EDIABAS - TRANSPARENT MODE

4.2. The API function apiResultBinary

In the transparent mode, the application programme gets the results of a job sent by
the function apiJobData/apiJobExt with the function

apiResultBinary(target address buffer, target address length, result, result set)

The target address buffer is the address of a variable in the application programme
(field for data bytes) where EDIABAS stores the result. The target address length is the
address of an APIWORD variable in the application programme where EDIABAS
stores the number of bytes received. The name of the result to be read must be
entered as the parameter result (not case sensitive). The result names are defined in
the separate TMODE functions. All results are in result set 1.

The error status is affected, i.e. if an error occurs during processing then the error
number and error text can be polled by API functions (see [1]).

 APIBOOL apiResultBinary(APIBINARY*buf,APIWORD*buflen,char*result,
APIWORD set)

Parameters:

 buf Address of buffer target variable
 buflen Address of length target variable. Up to APIMAXBINARY

characters can be transmitted
 result Name of the result
 set Result set number (always 1)

Return:

 APITRUE Result exists
 APIFALSE Job failed or result not present

Example:

 APIBINARY message[APIMAXPARA];
 APIWORD message length;
 apiResultBinary(message, &message length, "SG_ANTWORT",1);

4.3. Application example

In this section an example in language C is used to demonstrate the part of the
application programme in which utilities are requested by EDIABAS.

12

EDIABAS - TRANSPARENT MODE

The first part sets the control unit parameters. No result is polled after these
parameters are set because this utility does not return a result.

The second part requests the control unit's identification data. After the message is
sent the control unit's answer message is polled.

First, a job is always sent using the API function apiJobData/apiJobExt. Then
apiState is called cyclically in a loop until EDIABAS has finished processing the job.
Actions such as keyboard polling can be executed in this loop again and again. When
the job is finished the result is polled with apiResultBinary. Depending on the return
value of apiResultBinary (TRUE or FALSE), the system continues processing the
result or error handling is carried out. If no result is expected, apiState checks whether
an error has occurred when processing is finished.

13

EDIABAS - TRANSPARENT MODE

 unsigned char cu parameter[]= {
 0x01,0x01,0x01,0x01,0x0F,0x20,0x03,0x64,0x00};
 int cu parameterlength= 9;
 unsigned char request mes[]= {0x35,0x00,0x05,0x00};
 int request mes length = 4;
 APIBINARY answer mes[APIMAXBINARY];
 APIWORD answer mes length;

 apiJobData("TMODE",
 "SETZE_SG_PARAMETER_EIDBSS",
 cu parameter, cu parameter length,
 "");

 while (apiState() == APIBUSY) {
 /* short programme part, e.g. keyboard polling */
 }

 if (apiState() == APIREADY) {
 /* continue processing result or continue programme */
 }
 else {
 /* error handling, e.g. with apiErrorCode */
 }

 apiJobData("TMODE","SENDE_TELEGRAMM",
 request mes,request mes length,
 "");

 while (apiState() == APIBUSY) {
 /* short programme part, e.g. keyboard polling */
 }

 if (apiResultBinary(answer mes, &answer mes length, "SG_ANSWER", 1))
 {
 /* continue processing answer message */
 }
 else {
 /* error handling, e.g. with apiErrorCode */
 }

14

EDIABAS - TRANSPARENT MODE

5. The TMODE Functions

An essential part of the transparent mode is a description file in which all TMODE
functions (e.g. set control unit parameters, send a message etc.) are imaged on jobs.
In this section each job is described by its name, the required parameters, the result
name and the result content.

Assignment of API function parameters to names in the job description:

apiJobData ("TMODE",
 Job <------------> Jobname
 Parameter buffer <------------> Parameter
 Parameter buffer length <------------> Parameter
 Result <------------>.."" or result name
)

apiResultBinary(
 Target address buffer <------------> Result content
 Target address length,
 Result <------------> Result name
 Result set <------------> 1
)

A string of characters of the unsigned char type is always specified as parameters. To
specify variables of the int, long etc. type, they must first be converted, in which case
the first character is the least significant and the last is the most significant character
(Intel format).

The results are also specified as a string of characters of the APIBINARY type. If the
results are to be interpreted as variables of the int, long etc. type, they must also be
converted first. The results are also specified in Intel format.

15

EDIABAS - TRANSPARENT MODE

5.1. Overview of all TMODE functions

� INITIALISIERUNG
� SETZE_INTERFACE_ZURUECK
� SETZE_SG_PARAM_ZURUECK
� SETZE_SG_PARAMETER_ALLG
� SETZE_SG_PARAMETER_EIDBSS
� SETZE_ANTWORTLAENGE
� HOLE_KEYBYTES
� SENDE_TELEGRAMM
� SENDE_TELEGRAMM_WIEDERHOLT
� HOLE_ANTWORT_TELEGR
� STOPPE_WIEDERH_ANFORDERUNG
� LESE_INTERFACE_TYP
� LESE_INTERFACE_VERSION
� LESE_SPANNUNG_KL30
� LESE_SPANNUNG_KL15
� LESE_PORT
� SETZE_PORT
� SETZE_PROGRAMMIERSPANNUNG
� SETZE_SIA_RELAIS
� TESTE_DIAGNOSELEITUNG
� HOLE_INTERFACE_STATUS
� REICHE_AN_INTERFACE_DURCH
� SETZE_TRAP_MASK_REGISTER
� LIES_TRAP_MASK_REGISTER

5.2. INITIALISIERUNG

Jobname: INITIALISIERUNG

Parameters: None

Result name: DONE

Result contents: Value 1 as a 2-byte number

Description: This job is called automatically whenever the description file is
loaded or an EDIABAS error has occurred. It defines which

16

EDIABAS - TRANSPARENT MODE

interface is connected. This job requires the result DONE that is
interpreted by the EDIABAS system. In the transparent mode this
result is always 1.

5.3. SETZE_INTERFACE_ZURUECK

Jobname: SETZE_INTERFACE_ZURUECK

Parameters: None

Result name: -

Result contents: None

Description: This job puts the interface in the initialising state and tests the
diagnostic interface. The EDIC (IDBSS) will not accept a
command for about 2 seconds after the job.

5.4. SETZE_SG_PARAM_ZURUECK

Jobname: SETZE_SG_PARAM_ZURUECK

Parameters: None

Result name: -

Result contents: None

Description: This job breaks off communication with a control unit and cancels
the communication parameters. Any message from the control
unit still stored in the EDIC (IDBSS) is lost.

5.5. SETZE_SG_PARAMETER_ALLG

Jobname: SETZE_SG_PARAMETER_ALLG

Parameters: The communication parameters are defined as the parameters.

 You will find a detailed description of the parameters in [7] in the
description of the set_communication_pars function.

17

EDIABAS - TRANSPARENT MODE

Result name: -

Result contents: None

Description: This job sets the communication parameters required for
communicating with a control unit. The parameter format is
independent from the interface. Once parameters are set with this
job it is not necessary to change the user software when there is a
change of interface. The job must be called before any new
control unit is addressed. As well as the communication
parameters the message leader is filled with default values in
EDIABAS depending on the set concept. See 5.7 for further
details about message leaders.

5.6. SETZE_SG_PARAMETER_EIDBSS

Jobname: SETZE_SG_PARAMETER_EIDBSS

Parameters: The communication parameters are defined as the parameters.
The parameters must have the format requested by the EIDBSS
application on the EDIC, see [2]. The check bytes are not
transferred.

Result name: -

Result contents: None

Description: This job sets the communication parameters required for
communicating with a control unit. The parameter format is
dependent on the interface. Once parameters are set with this job
the user software must be changed when there is a change of
interface. The job must be called before any new control unit is
addressed. As well as the communication parameters the
message leader is filled with default values in EDIABAS
depending on the set concept. See 5.7 for further details about
message leaders.

5.7. SETZE_ANTWORTLAENGE

Jobname: SETZE_ANTWORTLAENGE

18

EDIABAS - TRANSPARENT MODE

Parameters: The message leader is defined as the parameter. The message
leader consists of two parameters, each comprising two bytes.
The first parameter is the answer length and the second is the
answer offset.

 Answer length: This indicates the length of the anticipated
CU answer.

 concepts 1, DS1, DS2 and concept 3:

 positive: number of anticipates bytes in answer message
from CU

 (constant answer length)

 negative: position of answer length in answer message (from
byte 0)

 (variable answer length)

 concept 2 and 4:

 Maximum number of blocks that contain the desired information.
If zero is specified as the answer length then all answer blocks
including the first acknowledge block will be collected up.

 Answer offset: Variable answer length with concept 1, DS1,
DS2 only. The answer length is computed as
follows:

 Length = (answer length + 1) + answer offset

 Default value for the message leader after the control unit
parameters are set:

 Concept Length Offset
 1 -2 0
 3 52 0
 5,6(DS1,DS2) -1 0
 2,4 1 0
 others 1 0

Result name: -

Result contents: None

19

EDIABAS - TRANSPARENT MODE

Description: When it sends a message the interface needs a message leader
containing information about the anticipated answer length and
answer offset. This information is the same for most CU
messages. By setting the leader with
SETZE_ANTWORTLAENGE the user can avoid having to
transmit it with every message. The leader is automatically set at
the beginning of the message when it is sent. If the user does not
set a leader the system uses the default values used by EDIABAS
to set the communication parameters.

5.8. HOLE_KEYBYTES

Jobname: HOLE_KEYBYTES

Parameters: None

Result name: KEYBYTES

Result contents: Control unit keybytes

Description: This job reads the key bytes and identification data from a
concept 2, concept 3 or a concept 4 control unit. The control unit is
woken up automatically if it has not yet been triggered.

5.9. SENDE_TELEGRAMM

Jobname: SENDE_TELEGRAMM

Parameters: Control unit message according to the CU specifications. The
checksum is omitted with concept 2, DS1 and DS2 control units.
The ETX at the block end is omitted with concept 2 and concept 4
control units.

Result name: SG_ANTWORT

Result contents: Control unit answer. With concept 2 and 4 control units the
answer blocks are appended to each other, omitting the last byte
of each block (ETX).

Description: This job sends a message to a control unit and gets the answer.

20

EDIABAS - TRANSPARENT MODE

5.10. SENDE_TELEGR_WIEDERHOLT

Jobname: SENDE_TELEGR_WIEDERHOLT

Parameters: Control unit message according to the CU specifications. The
checksum is omitted with concept 2, DS1 and DS2 control units.
The ETX at the block end is omitted with concept 2 and concept 4
control units.

Result name: -

Result contents: None

Description: This job sends the defined control unit message to the control unit
repeatedly. This mode can be terminated with the job
STOPPE_WIEDERH_ANFORDERUNG. In this mode a renewed
call of SENDE_TELEGR_WIEDERHOLT or a call of
SENDE_TELEGRAMM is answered with the error message
IFH_0006.

5.11. HOLE_ANTWORT_TELEGR

Jobname: HOLE_ANTWORT_TELEGR

Parameters: None

Result name: SG_ANTWORT

Result contents: Control unit answer message. With concept 2 and 4 control units
the answer blocks are appended to each other, omitting the last
byte of each block (ETX).

Description: If the repeated request for control unit answers has been started
with SENDE_TELEGR_WIEDERHOLT, the answers can now be
polled with this job. It is always the current CU answer which is
polled.

5.12. STOPPE_WIEDERH_ANFORDERUNG

Jobname: STOPPE_WIEDERH_ANFORDERUNG

21

EDIABAS - TRANSPARENT MODE

Parameters: None

Result name: -

Result contents: None

Description: This job stops the repeated sending and receiving of messages.

5.13. LESE_INTERFACE_TYP

Jobname: LESE_INTERFACE_TYP

Parameters: None

Result name: TYP

Result contents: "IDBSS" or "EIDBSS"

Description: This job polls the interface type as a zero-terminating string.
"EIDBSS" is the name of the application (diagnostic software) on
the EDIC.

5.14. LESE_INTERFACE_VERSION

Jobname: LESE_INTERFACE_VERSION

Parameters: None

Result name: VERSION

Result contents: Version number as low and high byte

Description: This job polls the version number of the interface.

5.15. LESE_SPANNUNG_KL30

Jobname: LESE_SPANNUNG_KL30

Parameters: None

22

EDIABAS - TRANSPARENT MODE

Result name: SPANNUNG

Result contents: Four byte value that indicates voltage in mV.

Description: This job polls the voltage at terminal 30 in mV.

5.16. LESE_SPANNUNG_KL15

Jobname: LESE_SPANNUNG_KL15

Parameters: None

Result name: SPANNUNG

Result contents: Four byte value that indicates voltage in mV.

Description: This job polls the voltage at terminal 15 in mV.

5.17. LESE_PORT

Jobname: LESE_PORT

Parameters: One byte indicating the port number.

Result name: PORTWERT

Result contents: Four byte value indicating the port value.
 Port 0-5: analog input 0 - 5 (voltage in mV)
 Port 6: analog input T 15 (voltage in mV)
 Port 7: analog input T 30 (voltage in mV)
 Port 8: jumper field (digital value)

Description: With EDIC nine ports can be read. Ports 0 to 7 are analog inputs,
port 8 polls the value of the jumper field.

5.18. SETZE_PORT

Jobname: SETZE_PORT

23

EDIABAS - TRANSPARENT MODE

Parameters: The first byte indicates the port number. Bytes 2 to 4 indicate the
value at which the port is set.
 Port 9: digital outputs

Result name: -

Result contents: None

Description: Ports can be set with this job. Only port 9 (digital outputs) can be
set in EDIC.

5.19. SETZE_PROGRAMMIERSPANNUNG

Jobname: SETZE_PROGRAMMIERSPANNUNG

Parameters: Four byte value giving the programming voltage in mV.

Result name: -

Result contents: None

Description: This job turns the programming voltage on and off. The
programming voltage level can be given in mV (0 - 3300 mV). A 0
V voltage means programming voltage is "off", otherwise "on".

5.20. SETZE_SIA_RELAIS

Jobname: SETZE_SIA_RELAIS

Parameters: Switching time in milliseconds as a 2 byte value.
 Switching time = 0x0000: de-energize permanently
 Switching time = 0xFFFF: energize permanently

Result name: -

Result contents: None

Description: This job energizes the EDIC service interval relay for the specified
time.

24

EDIABAS - TRANSPARENT MODE

5.21. TESTE_DIAGNOSELEITUNG

Jobname: TESTE_DIAGNOSELEITUNG

Parameters: None

Result name: ERGEBNIS

Result contents: Test result as a 2 byte value.
 0: Error occurred
 1: No error occurred

Description: This job tests the diagnostic lead; there must be a short between
the RD and TD leads.

5.22. HOLE_INTERFACE_STATUS

Jobname: HOLE_INTERFACE_STATUS

Parameters: None

Result name: IF_STATUS

Result contents: Status bytes of the interface

Description: This job requests the status bytes of the interface (see [2]).

5.23. REICHE_AN_INTERFACE_DURCH

Jobname: REICHE_AN_INTERFACE_DURCH

Parameters: Job to the interface (see [2])

Result name: IF_ANTWORT

Result contents: Answer from interface

Description: This job passes the data bytes sent to the EDIABAS direct to the
interface. EDIABAS does not evaluate the answer from the
interface. This job does not evaluate the status byte from the
interface.

25

EDIABAS - TRANSPARENT MODE

5.24. SETZE_TRAP_MASK_REGISTER

Jobname: SETZE_TRAP_MASK_REGISTER

Parameters: Sets the trap mask register with the long value defined as
parameter 1.

Result name: -

Result contents: None

Description: This job sets the trap mask register that can handle the
occurrence of an error in the description file.

5.25. LIES_TRAP_MASK_REGISTER

Jobname: LIES_TRAP_MASK_REGISTER

Parameters: -

Result name: TMR

Result contents: Current value of the trap mask register

Description: This job reads the trap mask register that can handle the
occurrence of an error in the description file.

26

EDIABAS - TRANSPARENT MODE

A. LIST OF REFERENCES

 [1] EDIABAS: API Interface Description

 [2] SOFTWARE DOCUMENTATION FOR EIDBSS-BMW CU
 COMMUNICATION INTERFACE
 Softing GmbH, Version 1.4

 [3] EDIABAS: BEST/1 - Language and Interpreter

 [4] EDIABAS: User Manual

 [5] EDIABAS: BEST/2 - Language Description

 [6] EDIABAS: API User Manual

 [7] EDIABAS: BEST/2 - Function Primer

27

	CONTENTS
	Update History
	Introduction
	About this Manual
	Conventions
	Special features, definitions, acronyms

	General
	The Programming Interface
	The API functions apiJobData/apiJobExt
	The API function apiResultBinary
	Application example

	The TMODE Functions
	Overview of all TMODE functions
	INITIALISIERUNG
	SETZE_INTERFACE_ZURUECK
	SETZE_SG_PARAM_ZURUECK
	SETZE_SG_PARAMETER_ALLG
	SETZE_SG_PARAMETER_EIDBSS
	SETZE_ANTWORTLAENGE
	HOLE_KEYBYTES
	SENDE_TELEGRAMM
	SENDE_TELEGR_WIEDERHOLT
	HOLE_ANTWORT_TELEGR
	STOPPE_WIEDERH_ANFORDERUNG
	LESE_INTERFACE_TYP
	LESE_INTERFACE_VERSION
	LESE_SPANNUNG_KL30
	LESE_SPANNUNG_KL15
	LESE_PORT
	SETZE_PORT
	SETZE_PROGRAMMIERSPANNUNG
	SETZE_SIA_RELAIS
	TESTE_DIAGNOSELEITUNG
	HOLE_INTERFACE_STATUS
	REICHE_AN_INTERFACE_DURCH
	SETZE_TRAP_MASK_REGISTER
	LIES_TRAP_MASK_REGISTER

	A.LIST OF REFERENCES

