
EDIABAS - BEST/2 LANGUAGE DESCRIPTION

EDIABAS
Electronic Diagnostic Basic System

BEST/2 LANGUAGE DESCRIPTION

VERSION 6b

Copyright BMW AG, created by Softing AG

BEST2SPC.DOC

EDIABAS - BEST/2 LANGUAGE DESCRIPTION

CONTENTS

CONTENTS..2

1. INTRODUCTION TO BEST/2 ..5

2. TEXT CONVENTIONS...6

2.1. Comments 6

2.2. Names 6

2.3. Reserved words 6

2.4. Constants 6

2.4.1. Integer constants 7

2.4.2. Char constants 7

2.4.3. String constants 7

2.4.4. Lists (Data) constants 7

2.5. Sizes 7

2.6. Syntax notation 7

2.7. What does a name mean 8

2.8. Objects and L values 8

3. CONVERSIONS...9

3.1. Characters and integers 9

3.2. Unsigned integers 9

3.3. Arithmetic conversions 9

4. EXPRESSIONS ...10

4.1. Simple expressions 10

4.2. Unary operators 10

4.3. Multiplication and division 11

4.4. Addition and subtraction 12

4.5. Shift operations 12

4.6. Comparisons 12

4.7. Equality comparisons 13

2

EDIABAS - BEST/2 LANGUAGE DESCRIPTION

4.8. AND gating of bits 13

4.9. Exclusive OR gating of bits 13

4.10. OR gating of bits 13

4.11. Logic AND gating 14

4.12. Logic OR gating 14

4.13. Assignments 14

4.14. Lists of expressions 15

5. DECLARATIONS...16

5.1. Type names 16

5.2. Declarators 16

5.3. Initializers 17

5.4. Predefined Macros 17

6. STATEMENTS...18

6.1. Compiler instructions 18

6.1.1. #include 18

6.1.2. #define 19

6.1.3. #undef 19

6.1.4. #asm #endasm 19

6.2. Assignments and procedure calls 20

6.3. Blocks 20

6.4. "if" statements 20

6.5. "while" statement 21

6.6. "do" statement 21

6.7. "switch" statement 22

6.8. "break" statement 22

6.9. "continue" statement 22

6.10. "return" statement 23

7. GLOBAL DECLARATIONS...24

7.1. Header 24

3

EDIABAS - BEST/2 LANGUAGE DESCRIPTION

7.2. Jobs 24

8. AREAS OF APPLICATION ...26

9. RUNTIME LIBRARY..27

4

EDIABAS - BEST/2 LANGUAGE DESCRIPTION

1. Introduction to BEST/2

BEST is the acronym for 'BEschreibungssprache für STeuergeräte' (description language for
control units). In EDIABAS this description language is used to meet the requirement for an
application-independent description facility. During the program runtime the system loads and
interprets description files in which information about the control units such as addresses and
conversions is hidden (encapsuling). BEST/2 description language therefore provides the
means to convert data stored in the control units into control unit independent values such as
engine speed or control unit number. Only data actually required by the application is
downloaded (information hiding).

A language with a syntax based on assembler language, BEST/1, already exists for this purpose.
However although BEST/1 is good for test purposes and simple programming it is difficult to read
and understand.

The more readable BEST/2 language was developed based on C language to resolve these
problems. C was chosen because it is in widespread use, is structured and contains only a few
language elements that are easy to learn.

BEST/2 is a problem-oriented language, with special functions that are called by library functions.
The only exception to this rule is the result manager which is a fundamental part of the language
definition.

There are no storage definitions because the virtual processor used with BEST/2 has no memory
apart from the stack that is already available in the processor.

5

EDIABAS - BEST/2 LANGUAGE DESCRIPTION

2. Text conventions

There are seven classes of word: names, reserved words, constants, strings, lists, operator
and other separators. Blanks, tabs, line separators and comments are classed as spaces and
ignored apart from the fact that they are needed to separate adjacent names, constants and
reserved words.

2.1. Comments

A comment starts with the characters /* and ends with the characters */. Comments that start
with the characters // end at the end of the line. Comments by /* */ cannot be nested.

2.2. Names

A name consists of a sequence of letters and digits; the first character must be a letter. The
underscore character _ counts as a letter. There is case sensitivity. The first 32 characters are
used to distinguish names, but they may also be longer.

2.3. Reserved words

The following words are reserved and can only be used with their predefined meaning:

argument author break case char
comment const continue data default
defrslt do ecu else exist
if int job language long
name origin range real result
return revision size of string switch
type unsigned uses while ##asm
#define #endasm #include #undef

2.4. Constants

There is a whole range of constants and they are described in this section. Section 2.5
describes the properties of the virtual processor that affects the size of the constants. All
constants are Long Constants.

6

EDIABAS - BEST/2 LANGUAGE DESCRIPTION

2.4.1. Integer constants

An integer constant consists of a string of digits. Its type is int and it is usually interpreted
decimally.

If the string starts with the sequence 0x or 0X it is interpreted hexadecimally, i.e. in base 16, and
the letters a (or A) to f (or F) count as hexadecimal digits with the decimal values 10 to 15.

If the string starts with the sequence 0y or 0Y it is interpreted binary, i.e. in base 2, and only digits
1 and 0 are used.

2.4.2. Char constants

A character in single quotes, e.g. 'x', is a char constant and its value is the value of the character
in the ASCII character set.

2.4.3. String constants

A string is a sequence of characters in double quotes, i.e. "...". A string ends with the character 0.

2.4.4. Lists (Data) constants

A list is a sequence of other constants (not lists) separated by , and enclosed in { and }. Strings
in lists do not end with 0. The length of the list carried over.

2.5. Sizes

char 8 bit ASCII
int 16 bit
long 32 bit
real 64 bit
char[] max. 1023 bytes
int[] max. 1023 bytes
long[] max. 1023 bytes

2.6. Syntax notation

The following rules apply when describing the grammar: "I" separates alternatives, "[" and "]"
enclose optional parts, "{" and "}" enclose optional parts that can be specified more than once,
and ";" terminates a rule.

7

EDIABAS - BEST/2 LANGUAGE DESCRIPTION

2.7. What does a name mean

A name is an object known to the compiler by its type and memory location.

2.8. Objects and L values

An object is a storage area that can be modified. An L value is an expression that describes an
object. A name is a simple example of an L value expression. The term L value recalls the
assignment E1=E2 in which the left operand must be an L value expression.

8

EDIABAS - BEST/2 LANGUAGE DESCRIPTION

3. Conversions

3.1. Characters and integers

char, int and long can be used wherever an integer object is needed. The values are
converted to integer values. A char, int or long value has a sign that is retained when
converted to longer integer values.

3.2. Unsigned integers

When an unsigned value and a regular value are combined the regular value is converted to
an unsigned value and the result is also unsigned. A short unsigned value is converted into a
regular value by adding zero bits as the most significant bits.

3.3. Arithmetic conversions

First char values are changed into long values.

If one of the operands is unsigned then the other is also changed to unsigned, and this then
also becomes the type of the result.

Otherwise, both operands are long values and the result is also a long value.

9

EDIABAS - BEST/2 LANGUAGE DESCRIPTION

4. Expressions

This section describes the operators for expressions. For simple expressions and unary
operations the manual states whether they return L values. The other operators do not return L
values.

The following sections are arranged in descending order of priority of the operators; all the
operators in a section have equal priority. The associativity of the operators is given in each
section (invisible bracketing).

Apart from priority, the processing sequence is undefined.

NOTE: Operators cannot be used with real values since this will lead to undefined
results! Real values can only be processed with the corresponding BEST/2
functions.

4.1. Simple expressions

Simple expressions are references to objects and constants, the index operation and function
calls. These operations are left-associative.

primary:
 identifier
 | constant integer
 | constant array
 | (expression)
 | primary ([argument list])
 | primary [expression]
 ;

 argument list:
 assignment {, assignment}
 ;

A name is a simple expression provided it has been suitably declared. Most names are L
values. The name type is usually given by the declaration. A constant is an L value. Constant
arrays always return 1. Identifiers return their value. Arrays always returns the value 1 unless
they are assigned to arrays. Names of job results return 1 if the result was requested,
otherwise 0. Names of job parameters return 1 if they were specified, otherwise 0.

4.2. Unary operators

Unary operators are right associative.

 unary:

10

EDIABAS - BEST/2 LANGUAGE DESCRIPTION

 primary
 | primary++
 | primary--
 | - primary
 | ! primary
 | ~ primary
 | ++ primary
 | -- primary
 | exist identifier
 | sizeof unary
 | sizeof (type specification)

The unary operator produces the negative value of its operand.

The ! operator for logic negation returns 1 for an operand with the value 0 and 0 for all other
operands. The result is the long type.

The ~ operator complements the individual bits in its operand.

The ++ and -- operands (sic) modify their operands by adding or subtracting 1. The operand
must be an L value. The result is not an L value.

The expression ++E is equivalent to E+=1, so the result is the new value of the operand after 1
is added.

The expression --E is equivalent to E-=1, so the result is the new value of the operand after 1 is
subtracted.

The expression E++ returns the same value of operand E, i.e. the original value of the object
that the L value E describes. 1 is added to the object itself.

The expression E-- returns the same value of operand E, i.e. the original value of the object
that the L value E describes. 1 is subtracted from the object itself.

The sizeof operator returns the size of its operand measured in bytes.

The exist operator returns <>0 (TRUE) or 0 (FALSE) depending on whether the specified
identifier is available or not. This is always TRUE for all variables, constants and result names
but only for job arguments when they were defined when the job was called.

4.3. Multiplication and division

The operators *,/ and % for multiplication and division are left associative. The usual arithmetic
conversions are used.

 multiplication:
 unary
 | multiplication * unary
 | multiplication / unary

11

EDIABAS - BEST/2 LANGUAGE DESCRIPTION

 | multiplication % unary
 ;

The binary operator * designates multiplication. It is commutative and associative.

The binary operator / designates division. When positive values are divided it breaks off
towards 0. Otherwise it breaks off towards the most negative number.

The binary operator % returns the remainder after dividing its two operators.

4.4. Addition and subtraction

The operators + and - for multiplication and division are left associative. The usual arithmetic
conversions are used.

addition:
 multiplication
 | addition + multiplication
 | addition - multiplication
 ;

The + operator returns the sum of its operands. It is commutative and associative.

The - operator returns the difference of its operands.

4.5. Shift operations

The shift operators << and >> are left associative. The usual arithmetic conversions are used.
The right operand is converted into an unsigned value.

shift:
 addition
 | shift << addition
 | shift >> addition
 ;

The value of E1<<E2 is the bit pattern of E1 shifted E2 bits to the left.

The value of E1>>E2 is the bit pattern of E1 shifted E2 bits to the right. If E1 unsigned then
bits with the value 0 are inserted. If E1 is a regular value then bits are inserted according to its
bit sign.

4.6. Comparisons

Comparisons are left associative.

12

EDIABAS - BEST/2 LANGUAGE DESCRIPTION

comparison:
 shift
 | comparison < shift
 | comparison <= shift
 | comparison > shift
 | comparison >= shift
 ;

The comparison operators return the long value 0 if the specified relation is false and 1 when
the relation exists. The usual arithmetic conversions are used.

4.7. Equality comparisons

The operators == and != behave in the same way as the other comparison operators but have
a lower priority.

equality:
 comparison
 | equality == comparison
 | equality != comparison
 ;

4.8. AND gating of bits

bit-and:
 equality {& equality}
 ;

The & operator is commutative and associative. The usual arithmetic conversions are used.

4.9. Exclusive OR gating of bits

bit-exclusive-or:
 bit-and {^ bit-and}
 ;

The ^ operator is commutative and associative. The usual arithmetic conversions are used.

4.10. OR gating of bits

bit-or:
 bit-exclusive-or {³ bit-exclusive-or}
 ;

13

EDIABAS - BEST/2 LANGUAGE DESCRIPTION

The | operator is commutative and associative. The usual arithmetic conversions are used.

4.11. Logic AND gating

andif:
 bit-or {&& bit-or}
 ;

The && operator is left associative. The result is 1 when both operators are not 0, otherwise
the result is 0. The right operand is only evaluated when the left is not 0.

4.12. Logic OR gating

binary:
 andif {³³ andif}
 ;

The || operator is left associative. The result is 0 when both operators are 0, otherwise the
result is 1. The right operand is only evaluated when the left is 0.

4.13. Assignments

Assignment operators are right associative. The left operand must always be an L value. The
type of the result is always the type of the left operand. An assignment operation returns the
value in the left operand as the result.

assignment:
 binary
 | unary = assignment
 | unary *= assignment
 | unary /= assignment
 | unary %= assignment
 | unary += assignment
 | unary -= assignment
 | unary &= assignment
 | unary ^= assignment
 | unary |= assignment
 ;

With simple assignment the value of the right operand replaces the value of the object which
designates the left operand. Before assignment the right operand is converted to the type of the
left operand.

The value of the assignment in the form E1 op= E2 can be derived from the assignment E1 =
E1 op (E2). E1 is only evaluated once however.

14

EDIABAS - BEST/2 LANGUAGE DESCRIPTION

4.14. Lists of expressions

expression:
 assignment {, assignment}
 ;

Two expressions separated by a comma are evaluated left to right. The type and value of the
result are the type and value of the right expression. This operation is left associative.

15

EDIABAS - BEST/2 LANGUAGE DESCRIPTION

5. Declarations

Declarations define how BEST/2 interprets the individual names entered by the user. They take
the following form:

declaration:
 type-name initialized-declarator-list;
 | real identifier;
 ;

Definitions reserve storage space (register) and contain information for the type of a list of
declarators. The declarators contain the names that are declared, possibly together with
initializers.

5.1. Type names

The following type names exist:

type-name:
 [unsigned]int
 | [unsigned]long
 | [unsigned]char
 ;

extra-type-name:
 data
 string
 real
 ;

A declaration can only contain one type name.

5.2. Declarators

A declaration contains a list of declarators separated by commas. In data definitions an
initializer can also be specified after each declarator.

initialized-declarator-list:
 declarator [=initializer]
 ;

declarator:
 identifier {'[' ']'}
 | (declarator)
 ;

16

EDIABAS - BEST/2 LANGUAGE DESCRIPTION

If a declarator is followed by a pair of square brackets then an array variable was declared.

5.3. Initializers

Data can also be initialized in a definition. Each initializer is preceded by the character = and
followed by an expression.

initializer:
 assignment

5.4. Predefined Macros

BEST/2 contains a number of predefined macros permitting the query of
header definitions in BEST/2 jobs:

__ECU__ designation of the control unit

__ORIGIN__ author of the first version

__REVISION__ current version (corresponds to header definition
revision)

__AUTHOR__ author

__LANGUAGE__ language

__USES__ basic description files

__ECUCOMMENT__ comment (1st line)

In BEST/2 jobs, the macros are to be used like global string constants. If one
of the optional header definitions is not available, the macro will supply a null
string.

17

EDIABAS - BEST/2 LANGUAGE DESCRIPTION

6. Statements

Unless otherwise specifically stated, statements are executed sequentially.

statement:
 statement-prefix statement
 | [expression];
 | compound-statement
 | if (expression) statement
 | if (expression) statement else statement
 | do statement while (expression);
 | break;
 | continue;
 | return;
 ;

statement-prefix:
 while (expression)
 | switch (expression)
 | case constant-integer;
 | default:
 ;

6.1. Compiler instructions

All compiler instructions must be indicated at the beginning of a line.

6.1.1. #include

With the #include instruction, additional BEST/2 source files can be entered in
BEST/2 description files. A line

#include "BEST/2 source file"

is replaced by the content of the desired file. If absolute and relative paths are
indicated, DOS notation must be used.

If the indicated Include file name contains an absolute or relative path, the
Include file must be located in the corresponding directory. With relative paths,
the path of the BEST/2 source file is used.

If the indicated Include file name contains no path, searching starts in the
directory of the BEST/2 description file. With the compiler, the search can be
extended to other directories.

18

EDIABAS - BEST/2 LANGUAGE DESCRIPTION

Behind the filename of an #include instruction only a comment is permitted.
The comment has to end within the same line. A comment over more than this
line is not permitted.

6.1.2. #define

In BEST/2 description files, text replacements can be defined with the
instruction #define. A line

#define identifier text

causes the name to be replaced by the indicated text throughout the BEST/2
description file. It is possible to distribute a long replacement text over several
lines by placing the character \ at the end of the line. No text will be replaced
within comments and character strings.

The name is structured according to the rules for other BEST2 names.

Macros and Escape symbols are not supported.

Behind the text of an #define instruction only a comment is permitted. The
comment has to end within the same line. A comment over more than this line
is not permitted.

6.1.3. #undef

In BEST/2 description files, previously performed #define definitions can be
undone with the instruction

#undef identifier.

Behind the identifier of an #undef instruction only a comment is permitted. The
comment has to end within the same line. A comment over more than this line
is not permitted.

6.1.4. #asm #endasm

In BEST/2 description files, BEST/1 code can be entered. It will be inserted
between the instructions #asm and #endasm.

#asm

 BEST/1 code

19

EDIABAS - BEST/2 LANGUAGE DESCRIPTION

#endasm

6.2. Assignments and procedure calls

The calculation of an expression is the most commonly used statement; it takes the following
form:

expression;

Such statements are usually assignments or procedure calls.

6.3. Blocks

A number of statements are assembled in a block. A block can always be specified instead of a
single statement.

compound-statement:
 {{declaration}{statement}}
 ;

A block can contain declarations. If a name that was previously entered is declared then the
previous declaration is replaced for that area of the block and restored at the end of the block.
This does not apply to array variables which apply globally for all blocks as soon as they are
defined.

6.4. "if" statements

There are two types of if statement:
 if(expression)
 statement

and
 if(expression)
 statement
 else
 statement

In both cases the expression is evaluated first. If the result is not 0, then the first dependent
statement is executed. In the second case the second dependent statement is executed when
and only when the result is 0. Else is assigned to the next if.

20

EDIABAS - BEST/2 LANGUAGE DESCRIPTION

6.5. "while" statement

The while statement has the following form:

 while(expression)
 statement

The dependent statement is repeated for as long as the value of the expression is not 0. The
expression is evaluated each time before the dependent statement is executed.

6.6. "do" statement

The do statement has the following form:

 do
 statement
 while(expression);

The dependent statement is repeated for as long as the value of the expression is not 0. The
expression is evaluated each time after the dependent statement is executed. That means, the
statement is executed at least once.

21

EDIABAS - BEST/2 LANGUAGE DESCRIPTION

6.7. "switch" statement

The switch statement ensures that the execution of the program is continued with one or more
statements depending on the value of an expression. The switch statement has the following
form:

 switch(expression)

 statement;
The usual arithmetic conversions are used to evaluate the expression but the result must be an
integer. The dependent statement is typically a block. Each statement within the dependent
statement can be preceded by any number of case labels:

 case constant-integer:

Each of these constants can only occur once in a switch statement. A case label can also take
the following form:

 default:

To execute the switch statement the expression is evaluated and compared with all case
constants. If a case constant is found that has the same value as the expression, then the
execution of the program is continued with the statement that follows the case label. If no
suitable case constant is found then execution is continued at a default case label if one
exists.

6.8. "break" statement

The

 break;

statement aborts the nearest do-, while- or switch statement.

6.9. "continue" statement

The

 continue;

statement must be dependent on a do- or while- statement. It ensures that the execution of a
program is continued from the point where the repeat of the nearest statement is decided.

22

EDIABAS - BEST/2 LANGUAGE DESCRIPTION

6.10. "return" statement

If a job was called, the return statement within the job assures that exit is made
from the job again. A string variable or string constant can be specified along in
the return statement. The runtime system assigns this value to the result
JOBSTATUS in result record 0. The return statement syntax is shown below:

return {constant-string | string-expression};

23

EDIABAS - BEST/2 LANGUAGE DESCRIPTION

7. Global declarations

A BEST/2 description file consists of a header and a sequence of jobs:

program:

header
{ declaration }
 job

7.1. Header

The definition of a header is structured as follows:

header:
ecu : string;
origin : string;
revision : string;
author : string;
language : string;
uses : string;
comment : string;]

ecu specifies the exact designation of the ECU.
origin specifies the author and initial creation..
revision specifies the version as numeric pair separated by a dot.(e.g. 1.0).
Both numbers has to be within the range 0-65535.
author specifies the author of the last change.
language specifies the language (optional).
uses specifies the basic description files (optional).
comment specifies a user comment, whereby several comment lines may be
specified.

The header definitions can be queried in the BEST/2 jobs of the corresponding
description file by means of PREDEFINED MACROS.

7.2. Jobs

The definition of a job takes the following form:

24

EDIABAS - BEST/2 LANGUAGE DESCRIPTION

job:

 job-header compound-statement

 ;

job-header:

 job (name : identifier;
 { comment : string;}
 {[argument : identifier;
 type : type-name|extra-type-name;
 { comment : string;}]}
 {[result : identifier;
 type : type-name|extra-type-name;
 range : value|string;
 defrslt : value|string;
 { comment : string;}]}
)

The job header defines the name of the job, the call parameters and possible results. The
parameters are declarations with possible initializers. These initializers are then evaluated as
default results or call parameters. The declaration of default results is optional.

25

EDIABAS - BEST/2 LANGUAGE DESCRIPTION

8. Areas of application

Global declarations apply to all jobs within the description file. These global declarations
declare constants! These cannot be modified!

Otherwise declarations only apply to the block in which they are described.

26

EDIABAS - BEST/2 LANGUAGE DESCRIPTION

27

9. Runtime library

The runtime library provides functions for communication, string handling, error handling etc. The
runtime library functions are written in BEST/1 so cannot be created by the user himself.

They are described in the "BEST/2 FUNCTION PRIMER" manual.

	CONTENTS
	Introduction to BEST/2
	Text conventions
	Comments
	Names
	Reserved words
	Constants
	Integer constants
	Char constants
	String constants
	Lists (Data) constants

	Sizes
	Syntax notation
	What does a name mean
	Objects and L values

	Conversions
	Characters and integers
	Unsigned integers
	Arithmetic conversions

	Expressions
	Simple expressions
	Unary operators
	Multiplication and division
	Addition and subtraction
	Shift operations
	Comparisons
	Equality comparisons
	AND gating of bits
	Exclusive OR gating of bits
	OR gating of bits
	Logic AND gating
	Logic OR gating
	Assignments
	Lists of expressions

	Declarations
	Type names
	Declarators
	Initializers
	Predefined Macros

	Statements
	Compiler instructions
	#include
	#define
	#undef
	#asm #endasm

	Assignments and procedure calls
	Blocks
	"if" statements
	"while" statement
	"do" statement
	"switch" statement
	"break" statement
	"continue" statement
	"return" statement

	Global declarations
	Header
	Jobs

	Areas of application
	Runtime library

